Data Scientist / ML Engineer (Risk Modelling, Financial)

Оплата: По договоренности
Удаленно

В поиске Data Science специалиста с опытом работы в банковских проектах для построения рисковых моделей (скоринг для кредитования).


Основные направления работы

Risk Modeling:

  • Полный цикл разработки ансамблевых моделей: подготовка и предобработка данных, разметка и разделение на обучающие и тестовые выборки.
  • Отбор и настройка базовых моделей с акцентом на их разнообразие для повышения качества прогнозов.
  • Разработка моделей машинного обучения для прогнозирования ежедневных остатков на расчетных счетах корпоративных клиентов, учитывая анализ временных рядов (неделя, месяц, квартал) и дополнительные факторы (дни недели, праздники, налоговые периоды, бизнес-циклы).
  • Обучение персонализированных моделей.
  • Применение методов объединения моделей (bagging, boosting, stacking) с оптимизацией весов в ансамбле.
  • Оценка производительности моделей с использованием метрик точности, полноты и F1-score для улучшения качества прогнозов.
  • Внедрение моделей в промышленную среду, мониторинг и регулярная оптимизация параметров.

Computer Vision:

  • Разработка и внедрение системы биометрической верификации личности, включая модули распознавания документов и сопоставления фотографий.
  • Анализ требований и проектирование архитектуры системы с учетом высоких стандартов безопасности и точности.
  • Реализация алгоритмов обработки изображений для извлечения данных из паспортов и сравнения с селфи-фотографиями.

Acquisition Analytics:

  • Анализ данных эквайрингового и РКО-портфеля: сбор и предобработка исторической информации о поведении клиентов.
  • Разработка признаков, отражающих транзакционную активность, финансовые показатели и паттерны использования услуг для выявления факторов оттока.
  • Построение и обучение ансамблевой модели прогнозирования с учетом специфики продуктов.
  • Внедрение системы скоринга клиентов по вероятности оттока на основе финансового поведения и длительности сотрудничества.


Требуемые технологии и инструменты: Python, SQL, Scikit-learn, XGBoost, LightGBM, CatBoost, TensorFlow/Keras, PyTorch, Random Forest, Gradient Boosting, Stacking, Pandas, NumPy, Matplotlib, Seaborn.